Several tips about welding equipment, MIG and TIG welders, plasma cutters. Welders with a higher power output can work with thicker metals, but higher voltage welders will require special power supply set ups—either generators or appropriate power outlets. A welder with lower voltage in the 100’s will not be able to handle heavy duty jobs, but it can be plugged in and operated from any outlet. Any welder with power over 200 cannot run off a typical power outlet and will naturally cost more to run. In addition, welders will either run an alternating current (AC) that reverses itself at regular intervals or a direct current (DC) that flows in one direction and does not reverse itself. DC offers a steady rate of energy that leads to hotter temperatures and deeper weld penetration. AC welders usually cost less than DC welders, but the available electrodes are far more limited for AC. In fact, DC welders are more costly but remain popular because their higher power offers a wider selection of electrodes and a number of working advantages such as: simple arc striking, better penetration, and improved control. Welders who expect to work on a wide variety of projects may want to consider an AC/DC combination welder.
Looking for TIG welders? Welding Supplies Direct & Associate company TWS Direct Ltd is an online distributor of a wide range of welding supplies, welding equipment and welding machines. We supply Plasma Cutters, MIG, TIG, ARC Welding Machines and support consumables to the UK, Ireland and Europe.
Delivery of parts to the welding station in an organized and logical fashion is also a way to reduce welding costs. For example, one company was manufacturing concrete mixing drums. In the fabrication process, the company produced 10 parts for one section, then went on to make 10 parts of another drum section, etc. As pieces came off the line, they were put onto the floor of the shop. When it was time to weld, the operator had to hunt for the pieces needed and sort through them. When the outside welding expert pointed out the amount of time being wasted in this process, the company started to batch each one on a cart. In this way, the pieces needed to weld one drum were stored together and could easily be moved to the welding area. This type of scenario is also true for companies that may outsource parts to a vendor. Though it may cost more to have parts delivered in batches, it may save more in time than having to organize and search through parts to be able to get to the welding stage. How many times each piece is handled in the shop may be an eye-opener to reducing wasted time. To measure such an intangible as this, operators are asked to put a soapstone mark on the piece each time it is touched – some companies are surprised to find out how many times a part is picked up, transported and laid down in the manufacturing process. In the case of one company, moving the welding shop closer to the heat treatment station eliminated four extra times that the part was handled. Basically, handling a part as few times as possible and creating a more efficient production line or work cell will reduce overall costs.
Welding faster may sound appealing, but aside from practice, there are few shortcuts when creating a strong weld. In fact, unless a situation calls for a fast-moving weld, there’s a good chance that slow and steady is the way to go. An online search for ways to weld faster, will yield either descriptions of the ways automated welding has increased welding speed or press releases from companies who claim their gas or electrode holds the key to improving welding speed. In other words, it can seem like spending a lot of money is the only way to weld faster. However, for those looking for some ways to save time on their welding projects, there are some ways to weld faster for certain projects. While it’s not always a good idea to find a way to weld faster, there are situations when welding faster may produce a better product or a few simple changes can speed up the time on task.
How to pick a welder tips: Duty cycle: The advertised amperage of the machine offers a headline guide, but the duty cycle of the machine gives up the truth. Light industrial machine duty cycles can be as low as 20%, but more heavy duty MIG’s should range between 40-60%. If a 300amp MIG has 30% duty cycle for instance, it’s on the edge of acceptability. Duty cycle is determined by how many minutes out of 10, it can weld at 100%. Duty cycle testing: MIGS tested at 20 Degrees & 40 Degrees we consider good. (Beware any manufacturer who doesn’t quote an ambient temperature for testing) Manufacturer’s warranty: Always a great guide to quality. A three year warranty is good. Weld characteristics: Make sure the arc is smooth & suits your application. (Some machines are better suited at the low range and others at higher amperage range).
Business Name: Welding Supplies Direct & Associate company TWS Direct Ltd
Website: https://www.migwelders.ie/
Address : TWS Direct Ltd. Unit 1 M54 Space Centre.
Halesfield 8. Telford. Shropshire. TF7 4QN
Phone : +44 (0) 1952 582 260
Email: sales@weldingsuppliesdirect.co.uk
Office Hours: Mon – Frid / 9:00Am – 17:30pm